AP Statistics Summer Assignment

Welcome to AP Statistics future statiticians! The purpose of this assignment is to make you more comfortable exploring data analysis.

The summer assignment is composed of three parts.

1. Reading and Vocabulary: You will use a free online Statistical tutoring site that will give you information on variable and data displays. While reviewing the information on the site you will be completing a vocabulary list (See page 2 and 3). Follow the steps below:

- Go to www.stattrek.com
- Click on "AP Statistics" then "AP Tutorial"
- On the left side of the screen is a list of general topics. Under each general topic are a list of subtopics. You will rea the following subtopics to complete the vocabulary list.

General Topic: Exploring Data			
Subtopics:			Variables
	Population Vs. Sample		
	Central Tendency		
	Variability		
	Position		
	General Topic: Charts and Graphs		
Subtopics:			Charts and Graphs
	Patterns in data		
	Dotplots		
	Histograms		
	Stemplots		
	Boxplots		
	Scatterplots		
	Comparing Data Sets		

2. Practice Problems: After reading all of the material above you should be able to complete the questions in the remaining pages of this packer. You should do so in the spaces provided.

* only do the 1 st section of this part. We will do the rest of
them together (stop at the $u m$)

3. A graphing calculator is a required tool for this course. The TI Inspire is recommended. As you complete the practice problems refer to the TI Guidebook to become familiar with the list and statistical functions. For an online calculator go to www.alcula.com/calculators/statistics \longleftrightarrow no problems, just review

This packet should be completed by your return to school in You are expected to complete each part of each problem and to construct all data displays neatly. This assignment will be graded, and it will count as a test grade in the first grading cycle of the school year.

Bring this with you to locker day... we will meet for an hour on that day (Sept. 2)

AP Statistics Summer Assignment

Part 1: Vocabulary List

Please define each of the following terms from the information on the stattrek website. When asked provide a UNIQUE example or sketch of the word... One NOT given on the website and Not the one your friends use.

1. Categorical Variables

Example:
2. Quantitative Variables

Example:
3. Discrete Variables
4. Continuous
5. Univariate Data
6. Bivariate Data
7. Population

Example:
8. Sample

Example:
9. Median
10. Mean

Formula:
11. Outlier
12. Parameter
13. Statistics
14. Range
15. Standard Score (z-score)

Formula:
16. Center
17. Spread
18. Variance:

Formula:
19. Standard Deviation

Formula:
20. Symmetry

Sketch:
21. Unimodal

Sketch:
23. Skewness

Sketch Skewed left:

22. Bimodal

Sketch:

Sketch Skewed right:
24. Uniform

Sketch
26. Outliers
28. Bar chart
29. Histogram
30. Difference between bar chart and histogram
31. Stemplots
32. Boxplots
33. Quartiles
34. Range
35. Interquartile Range
36. Four ways to describe data sets
37. Types of graphs that can be used for comparing data

CATEGORICAL OR QUANTITATIVE
Determine if the variables listed below are quantitative or categorical.

1. Time it takes to get to school
2. Number of people under 18 living in a household
3. Hair color
4. Temperature of a cup of coffee
5. Teacher salaries
6. Gender
7. Smoking
8. Height
9. Amount of oil spilled
10. Age of Oscar winners
11. Type of Depression medication
12. Jellybean flavors
13. Country of origin
14. Type of meat
15. Number of shoes owned

STATISTIC-WHAT IS THAT?
A statistic is a number calculated from data. Quantitative data has many different statistics that can be calculated. Determine the given statistics from the data below on the number of homeruns Mark McGuire hit in each season from 1982-2001.

70	52	22	49	3	32	58	39
39	65	42	29	9	32	9	33

Mean	
Minimum	
Maximum	
Median	
Q1	
Q3	
Range	
IQR	

In 1997 there were 92,353 deaths from accidents in the United States. Among these were 42,340 deaths from motor vehicle accidents, 11,858 from falls, 10,163 from poisoning, 4051 from drowning, and 3601 from fires. The rest were listed as "other" causes.
a. Find the percent of accidental deaths from each of these causes, rounded to the nearest percent.
b. What percent of accidental deaths were from "other" causes?
c. NEATLY create a well-labeled bar graph of the distribution of causes of accidental deaths. Be sure to include an "other causes" bar.

d. A pie chart is another graphical display used to show all the categories in a categorical variable relative to each other. Create a pie chart for the accidental death percentages. You may try using a software or internet source to make one and paste in the space below. (Microsoft Excel works well)

It's A Twista
The data below gives the number of hurricanes that happened each year from 1944 through 2000 as reported by Science magazine.

3	2	1	4	3	7	2	3	3	2	5	2	2	4	2	2	6	0	2	5	1	3	1	0
3	2	1	0	1	2	3	2	1	2	2	2	3	1	1	1	3	0	1	3	2	1	2	1
1	0	5	6	1	3	5	3																

a. Make a dotplot to display these data. Make sure you include appropriate labels, title, and scale. The graph paper should help ensure you space your markings (you may use x's or dots) consistently.

				1					

SHOPPING SPREE!
A marketing consultant observed 50 consecutive shoppers at a supermarket. One variable of interest was how much each shopper spent in the store. Here are the data (round to the nearest dollar), arranged in increasing order:

3	9	9	11	13	14	15	16	17	17
18	18	19	20	20	20	21	22	23	24
25	25	26	26	28	28	28	28	32	35
36	39	39	41	43	44	45	45	47	49
50	53	55	59	61	70	83	86	86	93

a. Make a stemplot using tens of dollars as the stem and dollars as the leaves. Make sure you include appropriate labels, title and key

Where Do Older Folks Live?
This table gives the percentage of residents aged 65 or older in each of the 50 states.

State	Percent	State	Percent	State	Percent
Alabama	13.1	Louisiana	11.5	Ohio	13.4
Alaska	5.5	Maine	14.1	Oklahoma	13.4
Arizona	13.2	Maryland	11.5	Oregon	13.2
Arkansas	14.3	Massachusetts	14.0	Pennsylvania	15.9
Califomia	11.1	Michigan	12.5	Rhode Island	15.6
Colorado	10.1	Minnesota	12.3	South Carolina	12.2
Connecticut	14.3	Mississippi	12.2	South Dakota	14.3
Delaware	13.0	Missouri	13.7	Tennessee	12.5
Florida	18.3	Montana	13.3	Texas	10.1
Georgia	9.9	Nebraska	13.8	Utah	8.8
Hawaii	13.3	Nevada	11.5	Vermont	12.3
Idaho	11.3	New Hampshire	12.0	Virginia	11.3
Illinois	12.4	New Jersey	13.6	Washington	11.5
Indiana	12.5	New Mexico	11.4	West Virginia	15.2
Iowa	15.1	New York	13.3	Wisconsin	13.2
Kansas	13.5	North Carolina	12.5	Wyoming	11.5
Kentucky	12.5	North Dakota	14.4		

Histograms are a way to display groups of quantitative data into bins (the bars). These bins have the same width and scale and are touching because the number line is continuous. To make a histogram you must first decide on an appropriate bin width and count how many observations are in each bin. The bins for percentage of residents aged 65 or older have been started below for you.
a. Finish the chart of Bin widths and then create a histogram using those bins on the grid below. Make sure you include appropriate labels, title and scale.

Bin Widths	Frequenc\|
4 to <6	1
6 to <8	
8 to <10	

SSHA SCORES
Here are the scores on the Survey of Study Habits and Attitudes (SSHA) for 18 first-year college women:

154	109	137	115	152	140	154	178	101	103	126	126	137	165	165
129	200	148												

and for 20 first-year college men:

108	140	114	91	180	115	126	92	169	146	109	132	75	88	113
151	70	115	187	104										

a. Put the data values in order for each gender. Compute numeral summaries for each gender.

Women			Men	
Mean			Mean	
Minimum			Minimum	
Q1			Q1	
Median			Median	
Q3			Q3	
Maximum			Maximum	
Range			Range	
IQR			IQR	

b. Using the minimum, Q1, Median, Q3, and Maximum from each gender, make parallel boxplots to compare the distributions.

